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Physiological Daily Inhalation Rates for Health Risk
Assessment in Overweight/Obese Children, Adults,
and Elderly

Pierre Brochu,∗ Michèle Bouchard, and Sami Haddad

Physiological daily inhalation rates reported in our previous study for normal-weight sub-
jects 2.6–96 years old were compared to inhalation data determined in free-living over-
weight/obese individuals (n = 661) aged 5–96 years. Inhalation rates were also calculated
in normal-weight (n = 408), overweight (n = 225), and obese classes 1, 2, and 3 adults
(n = 134) aged 20–96 years. These inhalation values were based on published indirect
calorimetry measurements (n = 1,069) and disappearance rates of oral doses of water iso-
topes (i.e., 2H2O and H2

18O) monitored by gas isotope ratio mass spectrometry usually in
urine samples for an aggregate period of over 16,000 days. Ventilatory equivalents for over-
weight/obese subjects at rest and during their aggregate daytime activities (28.99 ± 6.03 L
to 34.82 ± 8.22 L of air inhaled/L of oxygen consumed; mean ± SD) were determined and
used for calculations of inhalation rates. The interindividual variability factor calculated as
the ratio of the highest 99th percentile to the lowest 1st percentile of daily inhalation rates is
higher for absolute data expressed in m3/day (26.7) compared to those of data in m3/kg-day
(12.2) and m3/m2-day (5.9). Higher absolute rates generally found in overweight/obese indi-
viduals compared to their normal-weight counterparts suggest higher intakes of air pollutants
(in μg/day) for the former compared to the latter during identical exposure concentrations
and conditions. Highest absolute mean (24.57 m3/day) and 99th percentile (55.55 m3/day) val-
ues were found in obese class 2 adults. They inhale on average 8.21 m3 more air per day than
normal-weight adults.

KEY WORDS: Air pollutants; daily inhalation rates; doubly labeled water; health risk assessment;
irritants; minute ventilation rates; overweight/obese subjects; ventilatory equivalent

1. INTRODUCTION

Health effects of inhaled environmental, occupa-
tional, and nonindustrial indoor irritants have been
reported in humans.(1–16) The magnitude of the air-
way irritation notably depends on the water solubility
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of inhaled irritants as well as the airflow-driven and
locally deposited doses of these chemicals (e.g., am-
monia, sulfur dioxide, ozone, and nitrogen dioxide)
to the tissues within the respiratory tract.(9,17,18) The
incidence of asthma among workers exposed to irri-
tant gases has also been found to be elevated par-
ticularly in construction, textile, shoemaking, metal
plating, electrical machinery, and pulp and paper
industries.(12,14,15,19–23)

Prior observations indicate that over-
weight/obese individuals are inhaling more air
per day (in m3/day) compared to their normal-
weight subjects.(24) Consequently, the former could
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inhale more chemicals on a 24-hour basis (in μg/day)
compared to the latter, considering similar exposure
concentrations and conditions. Obesity-related
conditions are already associated with several dis-
eases, including type 2 diabetes, insulin resistance,
osteoarthritis, cardiovascular illness, asthma, sleep
apnea, chronic obstructive pulmonary diseases,
pulmonary embolism, and cancers.(25–29)

The doubly labeled water (DLW) method is
thought to provide the most accurate data of to-
tal daily energy expenditures (TDEEs)(30–33) and
daily inhalation rates,(34–36) both for free-living peo-
ple of all ages and with various physiological
conditions.(37–41) TDEEs encompass all energy ex-
pended by humans during real-life situations in
their normal surroundings each minute of the day,
24-hours/day, on a daily basis over a long period of
time—from 7 to 21 days.(31)

The classical methodology for the determination
of inhalation data(24,42–44) in free-living subjects
involves the multiplication of TDEE values by two
central and constant values,(45) namely, the oxygen
uptake factor (H) of 0.21 L of O2/kcal and the
ventilatory equivalent (VQ) of 27 (L of air inhaled/L
of oxygen consumed). H corresponds to the volume
of oxygen consumed at standard temperature and
pressure, dry air (STPD) to produce 1 kcal of energy
expended, whereas VQ is the ratio of the minute
ventilation rate (VE) at body temperature and
saturated with water vapor (BTPS) to the oxygen
consumption rate (VO2) at STPD. In Brochu et
al.,(46) the accuracy of inhalation data (in particular,
the precision of upper limits of percentiles) was
improved by the determination and integration into
the calculation process of mean, standard deviation
(SD), and minimal as well as maximal values for H
and VQ, not only for subjects at rest (HF and VQβ)
but also during their aggregate daytime activities
(HP and VQα). Nevertheless, this improved method-
ology was exclusively used for the determination of
daily inhalation rates in normal-weight individuals,
including adults with body mass index (BMI) values
ranging from 18.5 to <25 kg/m2. The same was
applied to VQα, VQβ values.

The aim of this study is to determine the
percentiles of daily inhalation rates in free-living
overweight/obese male and female, including obese
classes 1 (i.e., BMI from 30 to <35 kg/m2), 2 (i.e.,
BMI from 35 to <40 kg/m2), and 3 (i.e., BMI ≥ 40
kg/m2), adults by using the methodology developed
by Brochu et al.(46) Prior to these calculations, VQα

and VQβ will be determined specifically for over-
weight/obese subjects.

2. METHODOLOGY

2.1. Study Design

Mean and percentile values of physiological
daily inhalation rates (PDIRs) were determined as
a function of age in overweight/obese males (n =
286) and females (n = 375) aged 5–96 years and
compared to those reported in Brochu et al.(46) for
normal-weight subjects. Mean values for minute
energy expenditure rates (E in kcal/min), VO2, VE
(L/min), daily inhalation rates, and physical activity
levels (PAL, unitless) were also calculated for both
genders in normal-weight (n = 408) and overweight
(n = 225), as well as obese class 1 (n = 93), class
2 (n = 19), and class 3 adults (n = 22) aged 20–96
years. PAL values correspond to ratios of TDEE to
basal energy expenditure (BEE) values (i.e., basal
metabolic rates [BMRs] expressed on a 24-hour
basis). Individual data for healthy normal-weight
and overweight/obese subjects were gathered and
defined according to BMI cutoffs. Overweight
individuals aged 5–19 years are defined as those
having BMIs higher than the 85th percentile.(47,48) In
adults, normal-weight, overweight (preobese), and
obese classes 1 and 2 subjects are defined as those
having BMIs varying from 18.5 to <25, 25 to <30,
30 to <35, and 35 to <40 kg/m2, respectively.(49,50,99)

Adults with BMI values equal to or greater than 40
kg/m2 are classified into the class 3 obesity group.
Values for E, VO2, VE, and PAL, as well as daily
inhalation data were determined using individual
DLW measurements published in the database of
the IOM(98) for overweight/obese children, adults,
and elderly (n = 661) and normal-weight adults (n
= 408). Inhalation rates were expressed as absolute
values (m3/day), as well as relative values to the body
weight (m3/kg-day) and body surface area (BSA in
m3/kg-m2). Infants, toddlers, children, and teenagers
are hereafter referred to collectively as children.

2.2. DLW Measurements

The DLW method allows the precise determi-
nation of two types of energy expenditures in the
same subjects: (1) the BMR, and (2) the TDEE
value. The former is calculated from the respiratory
gas-exchange rates of oxygen (O2) and carbon diox-
ide (CO2) monitored by indirect calorimetry in sub-
jects 40 minutes immediately after waking up.(41,51,52)

During measurements of VO2 and carbon dioxide
production (VCO2), subjects are lying at complete
rest in thermoneutral conditions and have fasted



PDIRs for Health Risk Assessment 569

the prior 12–13 hours. Then, values for VO2 and
VCO2 (L/min) are converted into BMR values (in
kcal/min), which are then multiplied by 1,440 minutes
in order to obtain values for the BEE (in kcal/day).
The BEE value corresponds to the energy expen-
diture required on a 24-hour basis to maintain the
minimal tissue cellular activity in order to sustain vi-
tal functions, including blood circulation, respiration,
gastrointestinal, and renal processes.(53)

TDEE values encompass all daily energy expen-
ditures of free-living people notably for their BEE,
thermogenesis, physical activities, and synthetic cost
of growth.(36,40,54) The latter is the energy expended
to synthesize molecules that are stored in the new
tissue.(54) TDEE values are based on the disappear-
ance rates of oral doses of water isotopes (i.e., 2H2O
and H2

18O) monitored in body fluids of subjects (usu-
ally in urine or saliva samples) over a period of
7–21 days by gas isotope ratio mass spectrometry.(31)

The disappearance rate of deuterium (2H or D)
reflects water output and that of heavy oxygen-18
(18O) corresponds to water output plus CO2 pro-
duction rates because of the rapid equilibration of
the body water and bicarbonate pools by carbonic
anhydrase. The difference between the two disap-
pearance rates represents the CO2 production rate,
which is converted into units of energy (i.e., TDEE,
in kcal/day) by using the average respiratory quo-
tient of the diet (RQ). The RQ value may be deter-
mined by a complete diet record over the duration of
the study or respiratory gas-exchange measurements
(RQ = CO2 produced/O2 consumed). The basic principles
of indirect calorimetry and the DLW method are
summarized in Brochu et al.(55) Body weight (kg),
height (cm), and BMI (kg/m2) values complete the
set of data (with BEE and TDEE) that are systemat-
ically measured in the same subjects during the DLW
method. Individual data of this set of measurements
are available for each subject in the database of the
IOM.(98)

2.3. Physiological Daily Inhalation Rates

Values for the sleeping metabolic rate (SMR in
kcal/min) and the E during the aggregate daytime ac-
tivities (Eα in kcal/min) of subjects were expressed in
terms of BEE, TDEE (kcal/day), and sleep durations
(Sld in hour/day) by using the following equations:

SMR =
[(

BEE × Fsleep
)

1440

]
(1)

Eα =
[

TDEE − BEE
(24 − Sld) × 60

]
+

[
BEE
1440

]
, (2)

where 1,440 and 60 are the conversion factors from
days to minutes and hours to minutes, respectively,
and 24 is the number of hours in a day.

A mean correcting factor (referred to as Fsleep)
of 0.988 ± 0.083 for the determination of SMR val-
ues by using BEE data was calculated based on
heat production rates measured in sleeping over-
weight/obese subjects (n = 26) by direct calorimetry
compared with their awake counterparts.(56,57) Min-
imal and maximal Fsleep values of 0.847 and 1.148,
respectively, were also determined and used in this
study to define lower and upper limits of Fsleep dis-
tributions. This reduction of average heat produc-
tion rates is consistent with slightly lower mean val-
ues for tidal volumes, breathing frequency rates, VE,
VO2,(58–61) and systolic and diastolic blood pressures
as well as heart rates that have been observed in
sleeping subjects in the supine position, compared
with their awake counterparts.(62,63)

PDIRs (in m3/day) were determined by using the
following equation:(46)

PDIR = [(SMR × HF × VQβ × Sld)

+ (Eα × HP × VQα) × (24 − Sld)]

× 0.06, (3)

where HF is the oxygen uptake factor during the fast-
ing phase (L of O2/kcal), HP is the oxygen uptake
factor during the postprandial phase (L of O2/kcal),
α is the data for the aggregate daytime activities of
subjects, and β is the data for subjects under resting
conditions.

The value for HF of 0.2057 ± 0.0018 L of O2/kcal
(mean ± SD; n = 31) required for the combus-
tion of metabolic fuels in fasting subjects (i.e., glyco-
gen, glucose, 3-hydroxybutyric acid, acetoacetic acid,
and triacylglycerol) has been determined by Brochu
et al.(46) with minimal and maximal values of 0.198
L of O2/kcal and 0.214 L of O2/kcal, respectively.
The HP value of 0.2059 ± 0.0019 L of O2/kcal
(mean ± SD; n = 1,245) has been calculated for
the combustion of carbohydrates, proteins, and fats
in subjects during the postprandial phase with mini-
mum and maximum of 0.199 L of O2/kcal and 0.221 L
of O2/kcal of energy expended, respectively.(46) Both
H values were determined by a specific methodol-
ogy developed by Brochu et al.(46) based on published
sets of VO2 and VCO2 data measured by indirect
calorimetry at STPD in the same subjects.
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VQβ and VQα values (i.e., VE/VO2 ratios, L of
air inhaled/L of oxygen consumed) were determined
in this study for each age group by gathering pub-
lished sets of simultaneous measurements of VE and
VO2 with VO2 demands within the span of VO2β or
VO2α values specific to overweight/obese subjects.
These spans of VO2β and VO2α values were pre-
liminary calculated by using BEE and TDEE values
measured in overweight/obese individuals using the
following equations:(46)

VO2β =
[

BEE
1440

]
× HF (4)

VO2α =
[

(TDEE − BEE)
(24 − Sld) × 60

+ BEE
1440

]
× HP. (5)

Published VO2 and VCO2 values were gen-
erally measured using paramagnetic O2 and in-
frared CO2 analyzers, respectively,(64) whereas pub-
lished VE data were measured by spirometry or
pneumotacography.(65) Values for Sld in this study
(n = 14,732) were taken from Brochu et al.(46) These
data, resulting from a critical analysis of the litera-
ture, have been recorded day by day on question-
naires by survey respondents for periods of time
ranging from 1 to 3 years with complementary data,
such as body weight (kg), height (cm), and BMI val-
ues (in kg/m2) of respondents and those regarding
work conditions, physical activities, diet, as well as
health and socioeconomic variables.(66–69)

PDIR values (in m3/day) were expressed per
unit of BSA (in m2) using the formula developed by
Mosteller(70) based on height (cm) and body weight
(Bw in kg) values:(70)

BSA =
[

height × Bw
3600

]0.5

. (6)

This equation is preferentially recommended
for accurate BSA calculations in children(71,72) and
adults(73) compared to other algorithms.(74–81)

Mean values for Eα (kcal/min), VO2β, and
VO2α (L/min) in normal-weight, overweight, and
obese classes 1, 2, and 3 adults were calculated by us-
ing Equations (2), (4), and (5), respectively, whereas
those for Eβ (in kcal/min) and VEβ (in L/min) in
fasting subjects at rest, as well as VEα (in L/min) dur-
ing the postprandial phase, were determined by using
the following equations:

Eβ =
[

BEE
1440

]
(7)

VEβ =
[

BEE
1440

]
× HF × VQβ (8)

VEα =
[

(TDEE − BEE)
(24 − Sld) × 60

+ (BEE)
1440

]
× HP × VQα.

(9)

2.4. Statistical Analysis

Data were grouped by age, usually with more
than 30 subjects per group in order to optimize the
probability of achieving a normal distribution for
each age group, as formally recommended according
to the central limit theorem.(82–84) Anderson-Darling
goodness-of-fit tests were carried out on individual
TDEE, BEE, body weight, and BSA values, per age
group, in order to determine their best fit distribu-
tion (i.e., lognormal or normal). The best fit distri-
butions for Sld, HP, HF, VQβ, and VQα values were
taken from Brochu et al.(46) Mean and SD values as
well as distribution percentiles were calculated for
daily inhalation rates. Monte Carlo simulations were
necessary to integrate SD values of input data into
the calculation process of parameters of interest (i.e.,
VQβ, VQα, VO2β, VO2α, VEβ, VEα, and PDIR).
They were conducted based on random sampling in-
volving 10,000 iterations for each calculation process.
For each age group, statistical differences in mean
values between normal-weight and overweight/obese
individuals have been calculated by using the Mann-
Whitney test (data not shown in tables).

3. RESULTS

Mean and SD values for body weight, BSA,
BMI, BEE, and TDEE data as well as results of
Anderson-Darling goodness-of-fit tests appear in Ta-
ble I. Mean, SD, and distribution percentiles for VQβ

and VQα values are reported in Tables II and III,
respectively. Mean, SD, and percentiles for PDIRs
in overweight/obese males and females aged 5–96
years old are presented in Tables IV and V, respec-
tively. Mean body weight, BSA, BEE, TDEE, Eβ,
Eα, PAL, VO2β, VO2α, VEβ, and VEα values as
well as PDIRs in normal-weight, overweight, and
classes 1, 2, and 3 obese adults aged 20–96 years old
are reported in Table VI.

Mean and percentile inhalation data expressed
per unit of body weight (in m3/kg-day) in over-
weight/obese subjects are higher in children than
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in adults (Tables IV and V). The same applies in
most cases when males are compared to females.
These data are usually lower than those reported in
Brochu et al.(46) for normal-weight subjects. For in-
stance, the 99th percentile of 0.667 m3/kg-day for
overweight/obese males aged 7–9 years old is 7%
lower than the value of 0.712 m3/kg-day for normal-
weight boys of same age. Overweight/obese boys
and girls aged 5 to <10 years are generally in-
haling more air per unit of BSA (in m3/m2-day)
than overweight/obese adults. Finally, the compar-
ison between normal-weight and overweight/obese
inhalation percentile and mean values expressed in
m3/m2-day does not follow a clear tendency. For
instance, the mean of 9.14 m3/m2-day in normal-
weight adults is 4%, 2%, and 10% higher than
values for overweight, obese class 1, and obese
class 3 adults, respectively, and 11% lower than
the one for obese class 2 adults (Table VI).

Daily inhalation means in adults aged 20–96
years (Table VI) are gradually increasing when
BMI values increase from 18.5 up to <40 kg/m2,
but slightly decrease when BMI are greater than
40 kg/m2. These inhalation data are consistent with
the corresponding increasing mean values for BEE,
TDEE, PAL (i.e., TDEE/BEE ratio), and body
weight, respectively, for these groups of subjects
(Table VI). Obese class 3 subjects were physically
less active (PAL of 1.62, VO2α of 0.542 L/min, VEα

of 17.80 L/min) than obese class 2 individuals (PAL
1.77, VO2α of 0.632 L/min, VEα of 20.60 L/min).
Despite a relatively high mean BEE value (1,955
kcal/day), the lower mean TDEE value for the for-
mer (3,167 kcal/day), compared to the one for the
latter (3,582 kcal/day), has required a lower oxy-
genation rate on a 24-hour basis, and, of course, a
lower mean daily inhalation rate (21.51 m3/day com-
pared to 24.57 m3/day). Obese class 3 and class 2
adults are inhaling an average of 5.15 m3 and 8.21
m3 more air per day, respectively, than their normal-
weight counterparts, in order to be adequately oxy-
genated. The highest 99th percentile of 55.55 m3/day
was found in obese class 2 males compared to the
one of 31.89 m3/day reported in Brochu et al.(46) for
normal-weight subjects.

4. DISCUSSION

The integration of mean and SD values for
VQβ and VQα determined in this study (Ta-
bles II and III) as well as HF and HP data (taken
from Brochu et al.)(46) into the calculation process

of inhalation rates has allowed the determination
of upper limits of percentiles in overweight/obese
children, adults, and elderly that never have been
estimated before (Tables IV and V). Some over-
weight/obese individuals inhale more air on a daily
basis (thus more air pollutants) than would be ex-
pected from past observations in people of differ-
ent body weight categories, including normal-weight,
overweight, and obese subjects.(24) For instance, val-
ues for 99th percentiles calculated in this study
for overweight/obese children 10 to <16.5 years
and adults 35 to <45 years (22.64–24.84 m3/day
and 36.91–47.52 m3/day, respectively) by using
mean and SD values for HF, HP, VQβ, and VQα

are higher than highest 99th percentiles that have
been calculated in one of our studies(24) published
in 2006 for children (19.13 m3/day) and adults (28.81
m3/day) in the same body weight category based
on DLW measurements and central H and VQ
data. The same applies for percentiles expressed
per unit of body weight. For instance, 99th per-
centiles reported in this study for girls and boys
aged from 5 to <7 years of age of 0.647 and 0.681
m3/kg-day, respectively, are higher than the high-
est 99th percentile of 0.526 m3/kg-day published in
Brochu et al.(24) for overweight/obese children. Some
inhalation percentiles in overweight/obese subjects
are also higher than the estimate of 20 m3/day
adopted by the Federal Register for a 70-kg adult.(85)

For instance, values between 75th and 99th per-
centiles in males aged 16.5 to <35 years, 35 to <45
years, 45 to <65 years old varying from 26.92 to
50.55 m3/day, 30.33 to 47.52 m3/day, and 24.63 to
32.24 m3/day, respectively, are 1.3–2.5-, 1.5–2.4-, and
1.2–1.6-fold higher than the Federal Register value
of 20 m3/day.(85) Moreover, in girls and boys aged
5 to <10 years old, 75–99th percentiles expressed
per kg of weight (0.398–0.647 m3/kg-day and 0.411–
0.681 m3/kg-day, respectively) are 1.4–2.3- and 1.4–
2.4-fold higher than the Federal Register value of
0.286 m3/kg-day.(85)

Means of absolute PDIRs (in m3/day) calcu-
lated in this study for overweight/obese subjects are
higher than those reported in Brochu et al.(46) for
normal-weight individuals, when age groups are sim-
ilar (Tables IV and V). Overweight/obese males
are inhaling on average 1.8–6.2 m3 of extra vol-
umes of air per day (i.e., 11–31% more air per
day) than their normal-weight counterparts. This
comparison excludes age groups of boys 10 years
to <16.5 years old that were statistically different by
27% (p < 0.05). Gaps between overweight/obese and
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normal-weight mean rates in females aged 5 to <45
years and 45–96 years range from 1.6 m3/day to 5.4
m3/day (i.e., by 12.8–33.1%) and 0.2 m3/day to 0.8
m3/day (i.e., by 1.1–7.1%), respectively. Most abso-
lute percentiles (in m3/day) gathered per age groups
in overweight/obese subjects (i.e., 60 of 77 in females;
60 of 66 in males, excluding boys aged 10 years to
<16.5 years; Tables IV and V) are higher than those
for normal-weight individuals. For instance, highest
99th percentiles of 27.90 m3/day and 35.40 m3/day for
normal-weight females and males, respectively,(46)

are exceeded by the following percentiles deter-
mined in overweight/obese subjects 16.5 to <45 years
of age: 97.5th and 99th percentiles varying from 28.77
m3/day to 37.68 m3/day in females and 95th, 97.5th,
and 99th percentiles ranging from 38.3 m3/day to
50.55 m3/day in males (Tables IV and V).

Human interindividual variability factors in in-
halation data (expressed per m3/day, m3/kg-day, and
m3/m2-day) were calculated for entire cohorts (n =
1,896) of normal-weight individuals 2.6 months to 96
years of age reported in Brochu et al.(46) and over-
weight/obese subjects 5–96 years old included in this
study. The magnitude of human variability in inhala-
tion data as reflected by lowest 1st percentiles of 1.89
m3/day, 0.093 m3/kg-day, and 3.79 m3/m2-day (data
not showed in tables of Brochu et al.(46)) and high-
est 99th percentiles of 50.55 m3/day, 1.138 m3/kg-day,
and 22.29 m3/m2-day, respectively, correspond to fac-
tors of 26.7, 12.2, and 5.9 (classified in the same or-
der). The adequacy of the default uncertainty fac-
tor or the human kinetic adjustment factor (HKAF)
currently used in health risk assessment can be as-
sessed as the ratio of the highest 95th percentile to
the lowest 50th percentile of internal doses in cohorts
of subjects exposed to air pollutants.(134–136) There-
fore, interindividual variability factors were also cal-
culated as the ratio of highest 95th percentiles to low-
est 50th percentiles of inhalation data. Consequently,
interindividual variability factors of 11.1, 5.5, and
2.7 were calculated as the ratio of highest 95th per-
centiles of 38.51 m3/day, 0.937 m3/kg-day, and 18.44
m3/m2-day to lowest 50th percentiles of 3.47 m3/day,
0.170 m3/kg-day, and 6.81 m3/m2-day, respectively.

4.1. Accuracy of Input Data

Inhalation data in this study were calculated by
using body weight, height, BEE, and TDEE val-
ues that have been systematically measured in the
same subjects by the DLW method. Values for BEE
were obtained by indirect calorimetry measurements
(n = 1,069), whereas those for TDEE were derived

from gas isotope ratio mass spectrometry analysis
of disappearance rates of oral doses of deuterium
(2H) and heavy oxygen-18 (18O) for an aggregate pe-
riod of over 16,000 days. The accuracy of BEE val-
ues derived from indirect calorimetry measurements
has been shown to vary from +1% to +2%.(86) The
mean precision of TDEE values ranges from –1.0%
to +3.3% when the sources of drinking water are not
changed during the period of DLW studies.(31) Mean
errors of –8.7% in infants and +5.3% in soldiers on
TDEE values were observed when the sources of
tap water were modified.(87,88) In the worst-case sce-
nario, simultaneous minimal and maximal mean er-
rors associated with energetic input parameters (i.e.,
BEE and TDEE) and H values were shown to have
a combined effect varying from –3.0% to +2.3% on
the accuracy of PDIRs.(46) This span of potential er-
rors on inhalation values (i.e., –3.0% to +2.3%) is
insignificant compared to those based on time-
activity-ventilation, food-energy intakes, metabolic
equivalents, and parameter A approaches, which
vary from –49% to +122% for some 24-hour breath-
ing estimates.(43)

The possible shorter Sld values in over-
weight/obese children and adults compared to
their normal-weight counterparts(89–92,100) was
found to have a negligible influence on the order
of magnitude of daily inhalation rates.(46) A 25%
decrease in Sld data for 60% of overweight/obese
children, 35% of overweight adults, and 55% of
their obese counterparts (i.e., the worst-case sce-
nario according to the literature) has decreased the
global PDIRs of entire cohorts of subjects by only
0.03–0.17%.(46) Some publications also suggest that
sleep duration in subjects is inversely related to
BMI increases.(69,93–95) Overall, what precedes has
justified the use in this study of Sld values gathered
by Brochu et al.(46) from the literature regardless of
the under-, normal-weight, overweight, and obese
proportions of individuals in the different cohorts.

5. CONCLUSION

Based on absolute means and percentiles of
PDIRs (in m3/day), many overweight/obese individ-
uals, in particular obese class 2 and class 3 adults, are
expected to inhale more air pollutants (thus more
irritants) on a 24-hour basis (i.e., in μg/day) com-
pared to their normal-weight counterparts during
identical exposure concentrations and conditions. In-
halation rates per units of body weight (in m3/kg-
day) and BSA (in m3/m2-day) in overweight/obese
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children and adults will lead to generally higher in-
takes of air pollutants (i.e., in μg/kg-day and μg/m2-
day, respectively) for the former compared to the lat-
ter. The same applies when males are compared to fe-
males. The integration into the calculation process of
BEE and TDEE data with mean, SD, minimal, and
maximal values for subjects at rest (HF and VQβ)
and during their aggregate daytime activities (HP and
VQα) has assured mean potential errors on inhala-
tion data varying from –3.0% to +2.3%. The deter-
mination of minute ventilation rates during the ag-
gregate daytime activities of overweight/obese adults
are recommended in future studies, notably for use
in occupational risk assessments. The adequacy of
the default uncertainty factor or the HKAF currently
used in health risk assessment(96,97) should be as-
sessed based on individual variability factors calcu-
lated in this study for inhalation data (i.e., 2.7–26.7)
along with the variability of other pharmacokinetic
determinants.
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42. Brochu P, Ducré-Robitaille J-F, Brodeur J. Physiological
daily inhalation rates for free-living pregnant and lactating
adolescents and women aged 11 to 55 years, using data from
doubly labeled water measurements for use in health risk
assessment. Human and Ecological Risk Assessment, 2006;
12(4):702–735.
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